

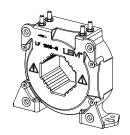
Current Transducer LF 1005-S/SP33

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

Electrical data

I_{PN}	Primary nominal RMS current		1000		Α
I_{PM}	Primary current, measuring range		0 ±	2000	Α
R_{M}	Measuring resistance		$R_{ m M\ min}$	$R_{ m M\ max}$	
	with ±24 V	@ ±1000 A _{max}	8.5	60	Ω
		@ ±1500 A _{max}	8.5	25	Ω
		@ ±2000 A _{max}	8.5	8.5	Ω
I_{SN}	Secondary nominal RN		200		mΑ
K_{N}	Conversion ratio		1:50	00	
U_{c}	Supply voltage (±7 %)		±24		V
$I_{\mathtt{C}}$	Current consumption		28 + I	S	mA

Accuracy - Dynamic performance data


X_{G}	Accuracy @ I_{PN} , T_A = 25 °C	±0.5		%
$\varepsilon_{_{\!\scriptscriptstyle L}}$	Linearity error	< 0.1		%
_		Тур	Max	
I_{Ω}	Offset current @ I_P = 0, T_A = 25 °C		±0.4	mA
$I_{\circ \tau}$	Temperature variation of I_0 = -40 °C +85 °C	±0.3	±0.8	mA
t_{r}	Step of response time $^{1)}$ to 90 % of I_{PN}	< 1		μs
BW	Frequency bandwidth (-1 dB)	DC	150	kHz

General data

T_{A}	Ambient operating temperature	− 40 +85	°C
$T_{\rm S}$	Ambient storage temperature	− 45 +90	°C
$R_{\rm S}$	Resistance of secondary winding @ T_A = 85 °C	45	Ω
m	Mass	500	g
	Standards	EN 50155: 2001	
		UL 508: 2010	

¹⁾ With a di/dt of 100 A/µs. Note:

$I_{\rm PN}$ = 1000 A

Features

- Closed loop (compensated) current transducer using the Hall
- · Insulating plastic case recognized according to UL 94-V0.

Special features

- $U_{\rm C}$ = ±24 (±7 %) V
- $U_{\rm d} = 6 \, {\rm kV}$
- $T_A = -40 \, ^{\circ}\text{C} \dots +85 \, ^{\circ}\text{C}$
- · Shield between primary and secondary
- · Connection to secondary circuit on M4 threaded studs.

Advantages

- Excellent accuracy
- Very good linearity
- · Low temperature drift
- Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- Single or three phase inverter
- Propulsion and braking chopper
- Propulsion converter
- · Auxiliary converter
- Battery charger.

Application domain

• Traction.

Current Transducer LF 1005-S/SP33

Insulation coordination				
U_{d}	RMS voltage for AC insulation test, 50 Hz, 1 min	6 1) 2)	kV	
ŭ		1 ³⁾	kV	
		Min		
d_{Cp}	Creepage distance	33.6	mm	
$d_{\sf Cp} \ d_{\sf Cl}$	Clearance	33.6	mm	
CTI	Comparative tracking index (group IIIa)	175		

Notes:

- 1) With a primary bar which fills the through-hole
- ²⁾ Between primary and secondary + shield
- ³⁾ Between shield and secondary.

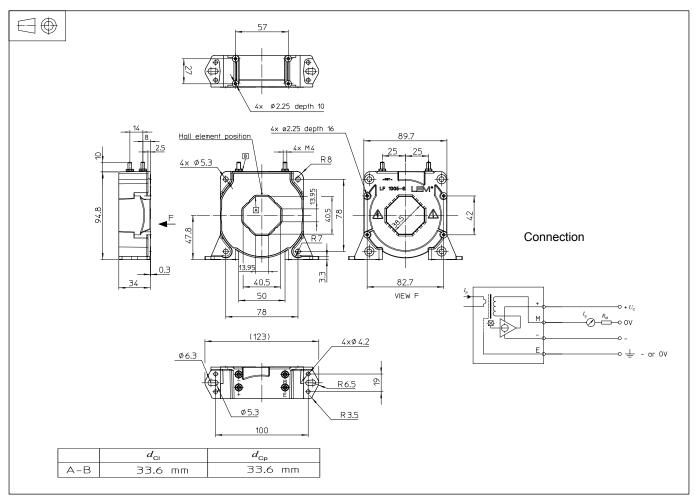
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LF 1005-S/SP33 (in mm)

Mechanical characteristics

 General tolerance ±0.5 mm

Transducer fastening Vertical position 2 holes Ø 5.3 mm

2 M5 steel screws Recommended fastening torque 4 N·m

2 holes Ø 6.3 mm 2 M6 steel screws

Recommended fastening torque 5 N·m

4 holes Ø 4.2 mm 4 M4 steel screws

Recommended fastening torque 3.2 N·m

4 holes Ø 2.25 mm or

depth 10 mm 4 × PT KA30 screws length 10 mm

Recommended fastening torque 0.9 N·m

Transducer fasterning

4 holes Ø 5.3 mm Horizontal position:

Recommended fastening torque 4 N·m

4 holes Ø 2.25 mm or depth 16 mm

Recomended fasterning torque

Primary through-hole or

Connection of secondary

Recomended fasterning torque

4 × PT KA30 screws

length 16 mm 1 N·m

40.5 × 13.5 mm

Ø 38 mm

M4 threaded studs

1.2 N·m

Remarks

- $I_{\rm S}$ is positive when $I_{\rm P}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: Products/Product Documentation.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.